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In a review of randomized controlled studies in criminal justice, Weisburd, Petrosino, and Mason 

(1993) observed that studies with larger sample sizes had lower statistical power than smaller 

studies. Challenging the conventional view that larger samples increase statistical power, this 

phenomenon was later titled the “Weisburd paradox” (Sherman 2007: 305; Hinkle et al. 2012: 222). 

Nelson, Wooditch, and Dario (2015) (NWD, henceforth) have recently conducted a replication of 

Weisburd, Petrosino, and Mason (1993) analysis, and confirmed their conclusion on power, stating 

that: “No consistent relationship exists between sample size and statistical power in the real world” 

(p. 153). Since this observation runs counter to statistical theory, they advise that “further 

development of the Weisburd paradox literature base is critical” (p.156). They further suggest that 

the Weisburd paradox implies that it is preferable to conduct small studies with large effect sizes 

than larger studies with lower effect sizes even if the latter provide more reliable estimates (p. 152). 

In what follows, we take issue with this recommendation. We argue that (1) the conclusions reached 

by NWD are based on the misunderstanding that calculating “achieved power” is not formative on 

what can be learned from a study, (2) there is nothing paradoxical about “the Weisburd paradox”, 

and (3) that small sample studies have important additional limitations that should be taken into 

account in evaluations of research designs. 

Statistical power 

In statistics, the concept of power refers to the probability of correctly rejecting the null hypothesis, 

and power calculations are typically performed when designing a study to ensure prospective data 

are sufficient to detect hypothesized effect(s) (Britt and Weisburd 2010). Statistical power relies on 

three parameters: the true effect size, the variance of the outcome, and the chosen level of 

significance. As standard errors decrease with sample size, power can be enhanced by increasing the 

sample size. The principle is straightforward: one should avoid collecting data or conducting an 

experiment unless the study has the potential to reliably estimate the parameter of interest with 

sufficient precision. The size of the experiment should be large enough to permit inferences with 

reasonable confidence about the parameter. It follows that if the variance is large and the true effect 

is small, one will not be able to tell if the effect estimate is statistically significant from zero. Simply 

put, you need larger samples to detect small effects, but you might detect large effects with smaller 

samples.  



 

 

However, one typically does not know the true effect size, so one need to use your best guess which 

is often based on prior studies. One might also consider calculating the power for the minimum 

effect size of any substantive interest. The power calculations are then done based on one’s best 

knowledge, and the only parameter left for manipulation is the sample size. Still, it is reasonable to 

design a study to get as large an effect as possible, which also enhances power. Gelman and Hill 

(2006) briefly discuss how medical studies might e.g. increase dosages rather than sample size to 

maximize power. Such a strategy can be more problematic in the social sciences as the 

“generalization to more realistic levels can be suspect” (Gelman and Hill 2007: 439).  

Achieved power is a non-informative metric 

The analysis of Weisburd, Petrosino, and Mason (1993) and NWD is based on post-hoc calculations of 

statistical power, and referred to as “actual achieved power”. According to Britt and Weisburd (2010) 

there is little consensus about the appropriateness of retrospective power analysis, but it is 

“informative in the sense that the results will indicate to the researcher using these data sources 

what the achieved dataset can and cannot tell them about the statistical relationships they may be 

most interested in” (p. 323). Contrary to this position, our understanding of the statistical literature 

suggests clear consensus regarding the (in)appropriateness of retrospective power analysis. Analyses 

of achieved power are generally considered futile by statisticians (Hoenig and Heisey 2001; Gelman 

and Carlin 2014; O'Keefe 2007; Senn 2007; Button et al. 2013). The medical statistician Stephen Senn 

writes:  

A power calculation is used for planning trials and is effectively superseded once the data are 

in. . . . An analogy may be made. In determining to cross the Atlantic it is important to 

consider what size of boat it is prudent to employ. If one sets sail from Plymouth and several 

days later sees the Statue of Liberty and the Empire State Building, the fact that the boat 

employed was rather small is scarcely relevant to deciding whether the Atlantic was crossed.  

(Senn 2007: 209) 

In a similar vein, O'Keefe (2007: 293) states – sarcastically, we assume – that the achieved power 

provides the answer to the question: “What chance was there of producing a statistically significant 

result, assuming that the population effect is exactly equal to the observed sample effect?” In most 

situations, this is not a question of interest. Without any reference to external information about 

true effect sizes, the analysis of achieved power does not bring anything new to the table (Gelman & 

Carlin 2014). 

What paradox? 

The apparent paradox is that achieved power is not consistently related to sample size, but what this 

means is that smaller studies tend to provide larger effect estimates. Weisburd, Petrosino, and 

Mason (1993) and NWD suggest that smaller studies report larger effect sizes because they tend to 

be qualitatively better than larger studies. This is so because increasing the sample might alter the 

experiment or the sample characteristics in unintended ways. For example, the experiment can be 

more difficult to implement with high integrity: managing attrition and ensuring correct dosages may 

be more challenging as studies get larger. Thus, the benefit gained from increased sample size is 

offset by decreased implementation quality and lower true effect size. Another possibility is that, in 

order to scale up, it may be necessary to relax eligibility criteria and to include participants for whom 



 

 

the treatment is likely to have less impact. This would also reduce the true effect, resulting in lower 

statistical power of the study.  

We think it is hardly paradoxical that studies with implementation problems have smaller effect sizes 

than well-implemented studies. We obviously agree with the recommendation that any study, small 

or large, should be implemented with high integrity, and that one should not compromise study 

quality in order to increase the sample size. Sometimes there are tradeoffs between integrity and 

sample size, and the consequences of such tradeoffs are worth investigating.   

One of the underlying issues in NWD is the scaling of the trial, which we agree is important but for 

reasons unrelated to statistical power. If NWD and Weisburd, Petrosino, and Mason (1993) are 

correct to assume that scaling up compromises implementation, scaling down is not necessarily a 

good option. If the treatment under investigation is intended to be applied on a larger scale, it would 

be important to know if a realistic implementation on that scale works equally well. If a treatment is 

only successful in small settings, this implies that large scale implementations will be ineffective. If 

NWD intended to draw attention to the broader issue of scaling of experiments and implementing 

programs on a much larger scale than the initial study, we agree that this is an issue worth exploring 

further. 

Publication bias, “p-hacking” and exaggerated effects 

NWD discuss the possibility that the Weisburd paradox (smaller studies report larger effect sizes) 

might be a result of publication bias, where Null findings are less likely to be published. They argue 

that this is not a likely explanation based on their own analysis. First, they included both published 

and unpublished studies in their review, and argue that there is no notable publication bias in their 

sample. Considering their overview of studies included (Nelson, Wooditch, and Dario 2015: 156-160), 

it seems like by “unpublished” they mean that the article was not published in an international 

journal. It does not mean ending up in a file drawer or not being made publicly available at all. It is 

the file drawer which represents the main publication bias, and NWDs data do not include any 

studies taken from the file drawer.  

Second, NWD point out that since the average “achieved power” is .32 in the reviewed studies, the 

average reviewed study consequently had a 68% chance of not finding a significant effect (Nelson et 

al. 2015: 156). This seems to suggest that criminological RCTs often get published even in the 

absence of significant results, which is counter to what would follow from publication bias. However, 

the review includes 402 outcome measures from a total of 66 studies, so if there is one effect 

estimate per outcome, there are on average about six estimates per study. It is not reported how 

many of the 66 studies do not report any significant effects, but we suspect that most of them report 

at least one significant estimate. It might be that any publication bias would primarily be related to 

the main estimate and non-significant additional outcomes do not affect publication chances. It is 

also possible that a non-significant main result is easier to get published if there are some significant 

effects in additional outcomes or for some sub-groups. In our opinion, there are no reasons to expect 

less publication bias in criminology – in both experimental and observational studies –  than in other 

fields of research (Head et al. 2015).  

If non-findings are harder to get published, estimates from small trials in published studies are likely 

to overestimate the underlying true effects (Gelman and Carlin 2014). This phenomenon has been 



 

 

called “the winner’s curse” (Button et al. 2013: 373). As Button et al. write, it has been more widely 

recognized that underpowered studies might fail to find significant effects, while the opposite 

problem of underpowered studies producing inflated effects has received less attention. The 

“winner’s curse” describes the phenomenon of published studies with low power producing inflated 

estimates of true effect sizes. If the true effect is small and the sample size is small, the only result 

that can emerge as statistically significant is an overestimate of the true effect. Estimates from 

smaller samples will not be large enough (under reasonable levels of significance) to separate a small 

effect from a null effect. Thus, “winner’s curse” is essentially related to the use of statistical 

significance as a “screener” or threshold that the study needs to reach for it to be published and 

considered relevant.  

As discussed by e.g. Head et al. (2015), the results can be affected by a wide range of practices such 

as recording many response variables and reporting only selected ones, deciding on whether or not 

to drop outliers, excluding, combining or splitting treatment groups, including or excluding 

covariates, and stopping data exploration when finding significant (or otherwise interesting) results. 

If the researcher runs many models and only reports the significant ones, this is sometimes referred 

to as “p-hacking” or “data snooping”.  

While the term “p-hacking” implies intentional massaging of data, Gelman and Loken (2014) argue 

that similar results can arise unintentionally from multiple comparisons. Their argument is basically 

that in many studies there are many decisions to be made about definitions, modelling techniques 

and specifications, exclusion of some observations and so forth, which can all be reasonable, but 

imply multiple comparisons (Gelman and Loken 2014). Since small studies are likely to be more 

sensitive to minor adjustments of the analysis, this could affect the average effect sizes.   

We cannot see that the effects of publication bias and p-hacking can be ruled out as potential 

explanations for the Weisburd paradox, and would rather encourage others to do a thorough 

analysis (for one example, see Head et al. 2015) of such bias in both experimental and observational 

studies in criminology. Pre-registration of randomized controlled trials could be one way forward, 

and some evidence from the medical sciences shows that the number of papers publishing null 

findings has increased after the establishment of clinical trial registry (Kaplan and Irvin 2015). 

However, the small - albeit increasing (Telep, Garner, and Visher 2015) - number of trials in our field 

might make a pre-registration system devoted only to criminology an unrealistic target. 

Preregistration would not, however, solve problems of p-hacking and multiple comparisons unless 

also the details of the modelling decisions are registered to a high degree in advance. 

 Conclusion 

In our opinion, the Weisburd paradox is not paradoxical at all, but rather an expected empirical 

pattern on basis of statistical theory and publication practices. NWD argued against the assumption 

of “more people, more power” (p. 142). We would prefer to put it differently: All else equal, high-

quality treatments are more likely to yield larger effect sizes. This applies to all studies regardless of 

the sample size. A more serious concern is that low-power studies are more likely to yield 

exaggerated effect sizes – even if the study is of good quality.  

Calculating “achieved power” is motivated by informing the researcher what the dataset at hand can 

and cannot tell them about how much one should trust the results (Britt and Weisburd 2010: 323). A 



 

 

far more promising approach to that end is the “design analysis” proposed by Gelman and Carlin 

(2014). To do so one has to rely on external information in a similar way that one would when 

conducting a prospective power analysis. They suggest to calculate what they call the “exaggeration 

ratio”, the magnitude in which the estimated effect might be exaggerated given the current design, 

providing that a statistically significant result is discovered. They show that one should be concerned 

about exaggerated results if the prospective power is less than .50. In studies with even less power, 

one should also be concerned that the estimate might even have the wrong sign (Gelman and Carlin 

2014). 

The problem with calculating “achieved power” is that it might give the impression that 

underpowered studies are far more powerful than they really are. In fact, the “achieved power” is 

uninformative and does not provide more insight than what can be concluded from inspecting the 

estimates and standard errors. However, statistical power remains very important when designing 

the study (Britt and Weisburd 2010; Vuolo, Uggen, and Lageson 2015). 

We certainly agree with both NWD and Weisburd, Petrosino, and Mason (1993) that ensuring 

implementation quality is an important part of any experiment that should not be sacrificed just to 

increase sample size. Clearly, one would expect a larger effect of an intervention that actually works 

as intended than an intervention that fails to do so. This is a crucial issue to consider when designing 

an experiment, and should indeed be considered when prospectively calculating statistical power. It 

is also important that the experiment is scaled according to substantive interest, so that programs 

intended to be implemented broadly should be scaled accordingly. There is little help in evaluation of 

an intervention that only works well on small samples if the goal is to implement the intervention 

more broadly.  

In conclusion, the dangers of conducting underpowered studies are as follows: First, it is more likely 

to not find a significant treatment effect at all even though it exist. This is the conventional 

interpretation of low statistical power, and also the concern raised by NWD in their conclusion. 

Second, if a significant effect is found, it is likely to be much larger than the true effect. If (intentional 

or unintentional) p-hacking is prevalent in criminological literature, like in other disciplines (Head et 

al. 2015), then any meta-analysis of effect sizes is expected to find larger effects in smaller studies. 

While we find it plausible that implementation problems contribute to this empirical regularity as 

well, recent discussions about the shortcomings of small trials in the larger scientific community 

(Button et al. 2013, Gelman & Carlin 2014) should not be overlooked in criminology, particularly as 

the available evidence (Nelson, Wooditch, and Dario 2015) suggests that true effect sizes in many 

criminological RCT’s are likely to be modest.  

We advice to only calculate power prospectively and never use “achieved power” to justify too small 

studies. Generally, a study should be implemented and scaled to capture the effect of interest, not 

just to maximize effect size.  
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